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The study of the logical properties of random struc-tures has focused on the existence of 0-1 laws, andother limit laws, for a variety of logics. We say that alogic L has a 0-1 law if, for every property that is ex-pressible by a sentence of L, the asymptotic probabil-ity is de�ned and is either 0 or 1. Glebski�� et al. [9] andFagin [7] independently showed that �rst-order logichas a 0-1 law. Such laws have also been establishedfor fragments of second-order logic [12], extensions of�rst-order logic by inductive operators [1, 15, 16] andthe in�nitary logic with �nitely many variables [13](see [4] for a survey of results on 0-1 and limit laws).Most of the known 0-1 laws in logic are provedby means of extension axioms. For atomic types s; twhere s � t, the s-t-extension axiom is a �rst-ordersentence stating that every tuple realizing the type scan be extended to a tuple realizing t. It can be provedthat every extension axiom has asymptotic probabil-ity 1 [7]. For graphs this amounts to saying that forall k � m and all collections v1; : : : ; vm of m nodesthere almost surely exists a node w with an edge toeach of v1; : : : ; vk but to none of vk+1; : : : ; vm. Sinceevery extension axiom holds in almost all graphs, thesame is true for any property which is a consequenceof a �nite collection of extension axioms. Some of theresults on asymptotic probabilities of graph proper-ties mentioned above can be derived in this way. Forinstance, the property of having diameter two is ex-pressed by the conjunction of two extension axioms.As a consequence, we obtain that �(connectivity) = 1,even though connectivity is not a �rst-order property.Similarly, given any graph H, the extension axiomsimply that almost all graphs contain H as an inducedsubgraph. Thus, every non-trivial property which isclosed under taking subgraphs has asymptotic proba-bility 0; in particular this proves that �(planarity) = 0and �(3-colourability) = 0.However, there are important graph propertieswhich have asymptotic probability 0 or 1 and for whichthis does not follow from the extension axioms, the



most notable being Hamiltonicity and rigidity. Blassand Harary [2] prove that there is no �rst-order sen-tence with asymptotic probability 1 which implies ei-ther Hamiltonicity or rigidity. They pose the questionof whether there is any natural logic which can expressHamiltonicity or rigidity and which has a 0-1 law. Thisproblem is also commented on in an informal way andreported as \still wide open" in [11].In this paper we investigate 0-1 laws for extensionsof �rst-order logic by Lindstr�om quanti�ers. Such ex-tensions were also considered, from the point of view of0-1 laws by Fayolle et al. [8], where a su�cient condi-tion was established on a quanti�er Q, for a restrictedfragment of the logic FO[Q] to have a 0-1 law. We ex-tend such results and formulate other su�cient condi-tions on quanti�ers Q associated with graph propertieswhich guarantee that the logic FO[Q] has a 0-1 law inthe language of graphs.We use our conditions to establish, in particular,that FO[Rig] has a 0-1 law, where Rig is the quan-ti�er associated with the class of rigid graphs. Bycontrast, we show that FO[Ham] does not have a 0-1law, where Ham is the quanti�er associated with theclass of Hamiltonian graphs. We also extend the resultfor FO[Rig] to its closure under relativizations. Thisenables us to establish that there is no regular logic(in the sense ain which this term is used in abstractmodel theory, see [6]) which can express Hamiltonicityand which has a 0-1 law, but there is one in the caseof rigidity.Finally, we also consider extensions of �rst-orderlogic by means of vectorized quanti�ers. In partic-ular, we show that for any quanti�er that is closedunder substructures, the corresponding extension of�rst-order logic by means of a vectorized sequence ofquanti�ers has a 0-1 law, greatly generalizing a re-sult of [8]. This establishes 0-1 laws for the exten-sions of �rst-order logic by the sequences of quanti-�ers obtained by vectorizing the graph quanti�ers for3-colourability and planarity.2 PreliminariesLet �; � be �nite relational signatures. We denotestructures by A;B; : : : and their universes by A;B; : : :.Let Str(�) and Strn(�) denote, respectively, the set ofall �nite �-structures and the set of all �-structureswith universe [n] = f0; : : : ; n� 1g. For a �-structureA and a formula  (x1; : : : ; xk), we write  A to denotef�a 2 Ak : A j=  (�a)g, i.e. the relation that  de�nes onA. Similarly, if  has additional free variables �y, thenfor any valuation �b of those variables, we de�ne  A;�b as

f�a 2 Ak : A j=  (�a;�b)g, i.e. the relation de�ned by  on A by �xing the interpretation of the parameters �yto be �b. For a sentence ', we write Mod(') to denotethe set of all (�nite) models of '. A structure B is asubstructure of A, if B � A, and the relations on Bare the restrictions of the corresponding relations onA to the universe B.De�nition 2.1 An atomic type in x1; : : : ; xk over �is a maximal consistent set of �-atoms and negated�-atoms in the variables x1; : : : ; xk. Often, we call anatomic type in k variables a k-type. We denote atomictypes by t; t0; s; : : : or by t(x1; : : : ; xk); : : : to display thevariables. By abuse of notation, we do not distinguishbetween an atomic type and the conjunction over allformulae in it.The following lemma is immediate.Lemma 2.2 Every quanti�er-free formula is equiva-lent to a disjunction of atomic types.Proof. Let '(x1; : : : ; xk) be a quanti�er-free for-mula over �. Then'(x1; : : : ; xk) � _tj=' t(x1; : : : ; xk);where t ranges over the atomic types in x1; : : : ; xk over�.2.1 Asymptotic ProbabilitiesLet 0 � p � 1. A Bernoulli trial with mean p is arandom variable X that takes only the values 0 and 1and such that P [X = 1] = p.Let �(�) = (�n(�))n2Nbe a sequence of probabil-ity spaces over �-structures, where �n(�) is obtainedby assigning a probability distribution �n to Strn(�).Some important examples are:� 
n(�; 1=2) denotes the probability space with theuniform probability distribution, i.e. every struc-ture A 2 Strn(�) has the same probability �(A) =1=jStrn(�)j.� For arbitrary functions p : N ! [0; 1] we de-�ne the probability spaces 
n(�; p) as follows:the truth of all instances R(i1; : : : ; ir) of �-atomsover universe [n] are determined by independentBernoulli trials with mean p(n).It is clear that when p is the constant function1=2, this indeed gives the uniform probability dis-tribution.



� G(n; p) is the probability space of random graphswith edge probability p (again p may depend onn). We write G(p) for the sequence (G(n; p))n2N.Note that G(n; p) is not the same space as
n(fEg; p), since a graph is assumed to be undi-rected and loop{free.For a �xed sequence �(�) = (�n(�))n2Nof proba-bility spaces, de�ne the probability �n(P ) of a classP of �-structures as the probability that a struc-ture A with universe f0; : : : ; n � 1g is in the classP . De�ne the asymptotic probability of P as �(P ) =limn!1 �n(P ), if this limit exists. If the limit doesnot exist, we say that P has no asymptotic probabil-ity for �(�).For any logic L, we de�ne the asymptotic probabil-ity �(') of a sentence of L to be �(Mod(')). If everysentence of L in the vocabulary � has an asymptoticprobability for �(�), we say that L has a limit lawfor �(�). Furthermore, if �(') is 0 or 1 for every �-sentence ' of L, we say that L has a 0-1 law for �(�).The following theorem is at the core of the proofdue to Glebski�� et al. [9] that �rst order logic has a0-1 law (see also [10]). It can be seen as establishingan \almost sure" quanti�er elimination property forthe theory of �nite structures.Theorem 2.3 ([9]) For every formula  (�x) of �rst-order logic, there is a quanti�er free formula �(�x) suchthat the sentence 8�x(� $  ) has asymptotic probabil-ity 1.For formulae  and � as in Theorem 2.3 above, we willsay that  and � are equivalent almost everywhere.2.2 Interpretations and Quanti�ersLet the signature � be fR1; : : : ; Rmg where Riis a relation symbol of arity ri. A sequence 	 = 1(�x1); : : : ;  m(�xm) of formulae of signature �, where i(�xi) has the free variables x1; : : : ; xri de�nes an in-terpretation	 : Str(�) ! Str(� )A 7! 	A = (A; A1 ; : : : ;  Am):An interpretation with parameters is given by a se-quence 	(�y) =  1(�x1; �y); : : : ;  m(�xm; �y) of �-formulae i which may contain besides �xi additional free vari-ables �y. For any �-structure A and any valuation �afor �y we obtain an interpreted structure	(A; �a) = (A; A;�a1 ; : : : ;  A;�am ):The following de�nition of a generalized quanti�eris essentially due to Lindstr�om [14].

De�nition 2.4 Let K be a collection of structures ofsome �xed signature � , which is closed under isomor-phisms, i.e. if A 2 K and A �= B then B 2 K. WithK we associate the generalized quanti�er QK , whichcan be adjoined to �rst-order logic to form an exten-sion FO[QK ], which is de�ned by closing FO underthe following rule for building formulae:If 	(�y) = ( 1; : : : ;  k) is an interpretation with pa-rameters �y from � to � then QK�x( 1; : : : ;  k) is aformula of FO[QK] of signature � with free variables�y. The semantics of QK is given by the following rule:for a �-structure A and a valuation �a for �y,(A; �a) j= QK �x( 1; : : : ;  k)() 	(A; �a) 2 K:An interpretation 	 from �-structures to � -structures also maps a probability space �n(�) to anew probability space 	�n(�) of � -structures, de�nedby assigning to B 2 Strn(� ) the probability�(B) = X	A=B �(A);where �(A) is the probability of A in �n(�).On the other hand, if we are given 	(�y), an inter-pretation with parameters, it does not de�ne a mapfrom �-structures to � -structures. Rather, it de�nes amap from pairs (A; �a), where A is a �-structure and �ais a valuation of the parameters �y in A, to � -structures.Thus, we will assume we are given a probability space�n(�; �y) that assigns a probability to (A; �a) for eachA 2 Strn(�) and each valuation �a of the parameters �yin A. We then de�ne the probability space 	�n(�; �y)by assigning to B 2 Strn(� ) the probability�(B) = X	(A;�a)=B �(A; �a):One of the goals of this paper is to elucidate the struc-ture of 	�n(�; �y).2.3 Graph quanti�ersIn this paper, a graph always means a loop-freeundirected graph G = (V;E). A graph quanti�er is ageneralized quanti�er given by an isomorphism closedclass H of graphs. It is applied to interpretations thatmap graphs to graphs. Thus, a graph quanti�er bindstwo variables, say x and y, and is applied to a singleformula '(x; y; �z) of signature fEg. A little compli-cation arises because we have to make sure that theinterpreted structure �(G; �a) is indeed a graph. Toavoid the necessity of verifying the semantic conditionthat a formula does indeed de�ne an irreexive and



symmetric relation (a condition that has to be metfor all valuations of the parameters), we impose norestriction on the formulae, but modify the interpre-tation of formulae.De�nition 2.5 For any class L of formulae over fEgand any isomorphism closed class H of graphs, we de-�ne the logic L[QGH] by closing L under the followingrule: given any formula '(x; y; �z), we can build alsothe formulaQGHx; y 'with free variables �z.The semantics is given by the equivalenceQGHx; y ' � QHx; y (x 6= y ^ ('(x; y) _ '(y; x))):(where '(y; x) is '(x; y) with variables x and y inter-changed.)For any formula '(x; y; �z) we will refer to the inter-pretation with parameters �(�z) de�ned by the formulax 6= y ^ ('(x; y; �z) _ '(y; x; �z)) as the graph interpre-tation associated with '. We also call QGH the graphquanti�er associated with H.3 Eulerian and Hamiltonian Graphs32 We now proceed to investigate conditions thatcan be imposed on a class of graphs H in order forthe logic FO[QGH] to have a 0-1 law. We begin, in thissection, by formulating some necessary conditions andshowing that they are not su�cient. We also obtaina necessary and su�cient condition for a certain frag-ment of FO[QGH] to have a 0-1 law.For any property K, let FOr[QK ] denote those sen-tences of FO[QK] of the form QK�x', where ' is �rst-order, i.e. FOr [QK] can express exactly those proper-ties that are reducible to K by means of a �rst-orderinterpretation without parameters. This fragment wasconsidered by Fayolle et al. [8], who showed for anygeneralized quanti�er QK , and any signature �, a suf-�cient condition for the logic FOr[QK] to have a 0-1law on the class of �-structures is that K is mono-tone and closed under extensions. Clearly a necessarycondition is that K itself has asymptotic probability0 or 1, because the property K can be trivially ex-pressed by a sentence of FOr [QK]. We �rst show thatthis latter condition is not su�cient, by means of anexample.

Example 3.1 Let E be the class of Eulerian graphs.It is well known that a connected graph G is Eulerianif, and only if, every vertex in G has even degree. Fur-thermore it follows from known results about degrees inrandom graphs (see [3], chapter 3) that E has asymp-totic probability 0 for G(p) for any constant 0 � p < 1.However, consider the following sentence of FOr[Eul]:' � (Eulx; y (x 6= y))It is clear that a graph G satis�es ' if and only if ithas an odd number of vertices. It follows that ' doesnot have an asymptotic probability for G(p) for any p.The above example shows that a graph propertymight have asymptotic probability 0 or 1 for G(p) for a�xed p, without the logic FOr[QGH], let alone FO[QGH],having a 0-1 law. The next result establishes a nec-essary and su�cient condition for FOr [QGH] to have a0-1 law for G(p).Theorem 3.2 For any graph property H, FOr [QGH]has a 0-1 law for G(p) if and only if H has asymptoticprobability 0 or 1 for each of G(0), G(1), G(p) andG(1� p).Proof. Let ' � QGHx; y  be a sentence of FO0[QGH].By Theorem 2.3, there is a quanti�er free formula �that is equivalent to  almost everywhere. The asymp-totic probability of ' is given by the asymptotic prob-ability of H on �G(p), where � is the graph interpre-tation de�ned by the formula �.Up to equivalence, there are only four quanti�er-free formulae in two variables that de�ne an irreexiveand symmetric relation:True, False, Exy and :Exy.Thus, �G(p) is one of G(1), G(0), G(p) or G(1 � p).In Example 3.1 above, the class of Eulerian graphsdoes not have an asymptotic probability de�ned forG(1).To take another example, recall that the class ofHamiltonian graphs has asymptotic probability 1 forG(p) for any constant p > 0 (see [3]). Since it is clearthat this class has asymptotic probability 0 for G(0),it follows from Theorem 3.2 that FOr[Ham] has a 0-1law. We will show next that there is no such law forFO[Ham], which implies that the condition in Theo-rem 3.2 is, in general, not su�cient to establish a 0-1law for the unrestricted logic FO[QGH].Example 3.3 Consider the sentence:



' � 9z(Hamx; y  ); where  � Exz ^:EyzThe interpretation 	(z) de�ned by  maps a pair(G; v) (where G = (V;E) is a graph and v a dis-tinguished vertex of G) to the complete bipartitegraph H = (V;E0), where E0 = f(a; b) j (v; a) 2E and (v; b) 62 Eg. Letting D(v) denote the set fa 2V j (v; a) 2 Eg, it can be veri�ed that the graph H hasa Hamiltonian cycle if and only if jD(v)j = jV �D(v)j.In particular, if G is a graph of odd size, then it cannotsatisfy the sentence '. On the other hand, ' is truein a graph of cardinality 2n just in case the graph con-tains a vertex of degree n. But, as n goes to in�nitythis happens almost surely (see [3], p. 57). We con-clude that ' does not have an asymptotic probabilityfor G(1=2).The contrast between Theorem 3.2 and Example 3.3shows that quanti�er-free interpretations with param-eters can be much more complex than those withoutparameters. We take up the analysis of the case withparameters in the next section.4 Graph Interpretations with Parame-tersIn order to formulate a condition on the graphquanti�ers Q which guarantees that the logic FO[Q]has a 0-1 law, we will construct an argument by quan-ti�er elimination. That is, we will state su�cient con-ditions on Q so that, for every quanti�er free formula , Qx; y  is itself equivalent, almost everywhere, to aquanti�er free formula. This, along with Theorem 2.3will then enable us to derive the required result.To establish this quanti�er elimination, we considerthe action of a quanti�er-free interpretaion with pa-rameters 	(�y) on a probability distribution that as-signs probabilities to structures (G; �a). For this, weconsider each atomic type of the tuple �a separately.That is, for each atomic type t, we de�ne a distribu-tion Gt;n(p) which assigns a probability to each pair(G; �a), where �a is a tuple of elements of G. This prob-ability is 0 if �a is not of type t in G, and otherwise itis the same for all tuples of type t in G.More formally, let t be an atomic type in the vari-ables �z = z1; : : : ; zm such that for each 1 � i < j � m,t j= zi 6= zj . We denote by Gt;n(p) the probabil-ity space obtained from Gn(p) as follows: for eachgraph G 2 Gn, and each m-tuple �a of elements inG, let the probability �t;n(G; �a) = 0 if G 6j= t[�a] and�t;n(G; �a) = �n(G)=k otherwise, where k is the num-ber of distinct tuples in G of type t. We write Gt(p)

for any sequence of probability spaces (�n)n2Nsuchthat �n is Gt;n(p) for n � m.De�nition 4.1 Let 	 be an interpretation in m pa-rameters and t a type in m variables, as above. Aclass of graphs H converges quickly to 1 (resp. 0) for	Gt(p) if �t;n(H) = 1� o(n�m) (resp. o(n�m)).This de�nition enables us to formulate the followinglemma.Lemma 4.2 If  (x; y; �z) is a �rst-order formula,	(�z) is the associated graph interpretation, and His a class of graphs which converges quickly to 1 for	Gt(p), then the sentence 8�z(t(�z) ! (QGHx; y  )) hasasymptotic probability 1 for G(p). Similarly, if Hconverges quickly to 0 for 	Gt(p), then the sentence9�z(t(�z) ^ (QGHx; y  )) has asymptotic probability 0 forG(p).Proof. (Sketch) We sketch the proof for the univer-sal case, the existential case being dual.The number of tuples of type t in a graph G ofcardinality n tends to nm=c for some constant c as ngoes to in�nity. Thus, if H converges quickly to 1 on	Gt(p), then in almost all graphs, for all tuples �a oftype t, 	(G; �a) 2 H. Hence 8�z(t(�z) ! (QGHx; y  ))has asymptotic probability 1 for G(p).Lemma 4.2 is used in proving the next result, whichde�nes the conditions for one step of our quanti�erelimination.Lemma 4.3 If  is a formula de�ning a graph inter-pretation 	(�z) in m parameters, and H is a class ofgraphs which converges quickly to 0 or 1 for 	Gt(p),for every m-type t, then there is a quanti�er free for-mula �(�z) such that the sentence 8�z(� $ QGHx; y  )has asymptotic probability 1 for G(p).Proof. (Sketch) Let� �_ft(�z) : H converges quickly to 1 for 	Gt(p)g:We now proceed to study the structure of the spaces	Gt(p). By Theorem 2.3, it su�ces to consider thecase where the interpretation 	(�z) is given by a quan-ti�er free formula. For the remainder of this section,we will also con�ne ourselves to the case where p isthe constant function 1=2.Let  (x; y; �z) be a quanti�er free formula de�ninga graph interpretation 	(�z) with m parameters. By



Lemma 2.2,  is equivalent to a disjunction of (m+2)-types. Let S be the collection of the types in this dis-junction that extend the m-type t. Clearly, 	Gt(1=2)is completely determined by which types are in S.Furthermore, if s is a type in the variables x; y; �zextending t(�z), then s is determined by its subtypess1(x; �z), s2(y; �z) and whether or not s j= Exy. More-over, in the case where either s j= x = zi or s j= y = zifor some i, the last of these is already determined bythe two (m + 1)-types s1 and s2. Thus, given two(m + 1)-types s1 and s2 extending t, there may beone or two (m + 2)-types consistent with s1 and s2.For our purposes, we can identify a set S of (m + 2)-types extending t with a function f that maps pairsof (m + 1)-types extending t into the set f0; 1; 1=2g.Thus, f(s1; s2) = 0 if there is no type in S that extendss1 and s2; f(s1; s2) = 1=2 if there are two (m + 2)-types that extend s1 and s2 and exactly one of them isin S; and f(s1; s2) = 1 if all the (m+2)-types that ex-tend s1 and s2 (whether there are one or two of them)are in S.Now, there arem+2m distinct types in the variablesx; �z, extending t. These are obtained by taking x = zifor some i, yielding m distinct types, and for the casewhen x 6= zi for all i, by taking the 2m ways in whichx can be connected by edges to z1; : : : ; zm.Thus, given a random graph G and a tuple �a suchthat G j= t[�a], we can divide the vertices b 2 G intom + 2m sets according to the (m + 1)-type of (b; �a).Of these sets, m are singletons (containing the ver-tices that are in the tuple �a) and the rest of the ver-tices are distributed randomly among the other 2msets. The probability that a pair (b1; b2) satisi�esG j=  [b1; b2; �a], and therefore that there is an edge(b1; b2) in 	(G; �a), is then given by f(s1; s2) where siis the (m+1)-type of (bi; �a). This discussion motivatesthe following de�nitions.De�nition 4.4 A pair (m; f) is an interpretive mea-sure for G(1=2) if and only if m 2 N and there aredisjoint sets P = fp1; : : : ; pmg and Q = fq1; : : : ; q2mgsuch that f is a function from (P [Q)2 to f0; 1; 1=2gsubject to the following conditions: f(x; y) = f(y; x)and if either x 2 P or y 2 P , then f(x; y) 2 f0; 1g.De�nition 4.5 For any interpretive measure (m; f),and any n � m, let Tn be the collection of all functionsT : f0; : : : ; n � 1g ! (P [ Q), for which there arem distinguished points 0 � a1; : : : ; am < n such thatT (x) = pi if and only if x = ai.For each T 2 Tn, the probability space �T is ob-tained by determining for each pair of points a; b 2f0; : : : ; n � 1g whether there is an edge between them

by means of independent Bernoulli trials with meanf(T (a); T (b)).Finally, the probability space �n(m; f) is de�ned byassigning to each graph G with n vertices the prob-ability (PT2Tn �T (G))=card(Tn), where �T (G) is theprobability assigned to G in the probability space �T .We write �(m; f) for the sequence (�n(m; f))n2N,where for n < m, �n is chosen arbitrarily.The relevance of the above de�nition to 	Gt(1=2)emerges in the following lemma.Lemma 4.6 If  (x; y; �z) is a quanti�er-free �rst-order formula, 	(�z) is the associated graph interpreta-tion, and t is a type in the variables �z, then 	Gt(1=2)is �(m; f) for some interpretive measure (m; f).Proof. Let  � be the formula x 6= y ^ ( (x; y) _ (y; x)), i.e. the formula that de�nes the interpreta-tion 	. By Lemma 2.2, we can assume that  � is pre-sented as a disjunction over a set R of atomic types inthe variables x; y; �z. Let S be the set of all types s inthe variables x; y; �z such that:s j= x 6= y; ands j= t, i.e. s extends t.Clearly, 	Gt(1=2) is completely determined by the setR \ S.We proceed to de�ne the measure (m; f). Let m bethe number of distinct parameters in �z, i.e. it is thecardinality of a maximal set P = fzi1 ; : : : ; zimg of vari-ables from �z such that t j= zij 6= zik . We will assumewithout loss of generality, by renaming variables if nec-essary, that P consists of the variables fz1; : : : ; zmg.Let Q = fq1; : : : ; q2mg be the power set of P .Intuitively, P [ Q represents the m + 2m sets ofvertices as mentioned in the discussion preceding Def-inition 4.4. Therefore, each pair (x; y) 2 (P [ Q)2either uniquely determines a type s 2 S (if either x ory is in P ), or it determines two types s0; s1 2 S. Thus,for each pair (x; y) 2 (P [Q)2, we will determine thevalue of the function f based on whether or not thecorresponding types are in R.We formally de�ne f as follows:1. f(z; z) = 0 for all z 2 P ;2. For zi; zj 2 P; i < j, let s be the unique typein S such that s j= x = zi ^ y = zj . We letf(zi; zj) = f(zj ; zi) = 1 if s j=  , and f(zi; zj) =f(zj ; zi) = 0 otherwise.3. For zi 2 P and q 2 Q, let s be the unique type inS satisfying:



s j= x = zi;s j= y 6= zj ; for 1 � j � m;s j= Eyzj ; for zj 2 q; ands j= :Eyzj ; for zj 62 q.We let f(zi; q) = f(q; zi) = 1 if s j=  andf(zi; q) = f(q; zi) = 0 otherwise.4. for qi; qj 2 Q; i � j, let s0 and s1 be the two typesin S satisfying:sc j= x 6= zk; for zk 2 P and c = 0; 1;sc j= y 6= zk; for zk 2 P and c = 0; 1;sc j= Exzk; for zk 2 qi; c = 0; 1;sc j= :Exzk; for zk 62 qi and c = 0; 1;sc j= Eyzk; for zk 2 qj and c = 0; 1;sc j= :Eyzk; for zk 62 qj and c = 0; 1;s0 j= Exy; ands1 j= :Exy.We let: f(qi; qj) = f(qj ; qi) = p;where,p = 8>><>>: 0 if s0 6j=  and s1 6j=  1 if s0 j=  and s1 j=  1=2 if s0 j=  and s1 6j=  1=2 if s0 6j=  and s1 j=  It then follows from the discussion preceeding De�ni-tion 4.4 that 	Gt(1=2) is �(m; f).Lemma 4.6 tells us the structure of the probabilityspaces on which H must converge quickly in order forus to be able to apply Lemma 4.3 to eliminate anoccurrence of a quanti�er. If this can be done for every�(m; f), then starting with an arbitrary sentence ' ofFO[QGH], by repeated application of this procedure, wecan obtain a quanti�er free sentence that is equivalentto ' almost everywhere. This then yields the maintheorem of this section:Theorem 4.7 For any graph property H, if H con-verges quickly to 0 or 1 for �(m; f) for every interpre-tive measure (m; f), then FO[QGH] has a 0-1 law forG(1=2)Proof. Let ' be a sentence of FO[QGH]. We prove, byinduction on the total number of quanti�ers in ', that' is equivalent almost everywhere to a quanti�er freesentence, i.e. to True or False. This is trivially truewhen this number is 0. Let ' contain q+1 quanti�ers.

There is a subformula� of ' which is either of the form9x , or of the form QGHx; y , where  is quanti�erfree. In either case, � is equivalent almost everywhereto a quanti�er free formula �. In the �rst case thisis true by Theorem 2.3 while in the second it followsfrom Lemma 4.3. Thus, by replacing � by � in ',we obtain a sentence '0 that is equivalent to ' over aclass with asymptotic probability 1, and that has onlyq quanti�ers. But then, by the induction hypothesis,'0 is equivalent to a quanti�er free sentence, on a classof asymptotic probability 1. Since the intersection oftwo classes that have asymptotic probability 1 mustitself have asymptotic probability 1, we conclude that' is equivalent almost everywhere to a quanti�er freesentence.We have assumed throughout this paper that we areworking with purely relational signatures. It is wellknown that when we have constants in our signature,than even the 0-1 law for �rst order logic fails. How-ever, one can still show that every sentence is equiv-alent almost everywhere to a quanti�er free sentence(cf.Theorem 2.3). This extends also to the above The-orem 4.7. Thus, for anyH that satis�es the hypothesesof the theorem, any sentence of FO[QGH], perhaps in-cluding constants, is equivalent almost everywhere toa quanti�er free sentence.5 RigidityWe now use the characterization provided by The-orem 4.7 to show that FO[Rig] has a 0-1 law, whereRig is the graph quanti�er formed from the class ofrigid graphs.Theorem 5.1 For every interpretive measure (m; f),the probability that a graph is rigid converges exponen-tially fast to either 0 or 1 for �(m; f).Proof. We distinguish three cases for interpretivemeasures (m; f). Recall that f : P [Q! f0; 1; 1=2g.(i) There exists a non-trivial permutation � on Psuch that f(p; p0) = f(�p; �p0) for all p; p0 2 P ,and f(p; q) = f(�p; q) for all p 2 P , q 2 Q.(ii) There exists a q 2 Q such that f(q; q0) 2 f0; 1gfor all q0 2 Q.(iii) All other cases.In case (i) the permutation � de�nes a non-trivialautomorphism on all G 2 �n(m; f). In case (ii) we



have a non-trivial automorphism for G 2 �n(m; f)provided G contains at least two nodes in the classde�ned by q; this holds with probability tending to 1exponentially fast. We prove that in all other cases,the graphs G 2 �n(m; f) are almost surely rigid.The random process of constructing G 2 �n(m; f)can be split into two subprocesses. In the �rst stage,the nodes from [n] = f0; : : : ; n�1g are distributed overthe m + 2m classes P [Q. In the second stage, edgesare determined according to the probabilities given byf . Recall that the �rst subprocess randomly selectsm points to form the singleton sets p 2 P , and thendistributes the remaining n � m nodes over the setsq 2 Q. For every q 2 Q, the probability that q getsprecisely k points is described by a binomial distri-bution b(k;n � m; 2�m), where b(k;n; p) is the usualabbreviation for�nk�pk(1� p)n�k:Obviously, the expected number of elements in ev-ery class q is 2�m(n�m). More precisely, basic factson binomial distributions (see e.g. [3, pp. 10-14]) im-ply that for every � > 0, the probability that someclass q contains less than (1� �)2�m(n�m) or morethan (1+ �)2�m(n�m) elements, is bounded by 2�"nfor some " > 0.It is convenient to exclude from further considera-tion those rare events, where the nodes are not `evenly'distributed over Q. Fix a constant d > 0, and let�dn(m; f) be a new probability space, obtained from�n(m; f) by throwing away all those graphs wherethe �rst stage of the construction produces any classq 2 Q with less than (1 � d)2�mn elements. Sincethese graphs form a set whose measure goes to 0 ex-ponentially fast, it su�ces to prove our result for thesequence of probability spaces �dn(m; f).Let X(G) be the number of non-trivial automor-phisms of G. We will prove that the expectationE(X) on �dn(m; f) tends exponentially fast to 0 asn goes to in�nity. Since, by Markov's inequality,P [X � 1] � E(X), this immediately implies the de-sired result. For � 2 Sn, let X� be the indicator ran-dom variable, de�ned byX�(G) = n 1 if � 2 Aut(G)0 otherwise.By linearity of expectation we have thatE(X) = X�2Sn�fidgE(X�):

The support of a permutation �, denoted supp(�)is the set of points moved by �. Let h = jsupp(�)j andTn;h = f� 2 Sn : jsupp(�)j = hg.It is su�cient to prove the following claim.Claim. There exists a � > 0 such thatE(X�) � 2��hnfor all h and all � 2 Tn;h.Indeed, the claim implies thatE(X) � nXh=1 jTn;hj2��hn� nXh=1 2h logn2��hn � 2�"nfor some " > 0.We �rst prove a bound on E(X�) that holds forarbitrary size of the support.Lemma 5.2 If � 6= id, then E(X�) � 2�"n for some" > 0 and su�ciently large n.Proof. � moves at least one point, say �(i) = j.Assume that the �rst subprocess produces p = figand p0 = fjg for p; p0 2 P . Then, since condition (i)does not hold, there exists a class q 2 Q such thatf(p; q) 6= f(p0; q). Thus, to be an automorphism of G,� has have to move the whole class q. But this meansthat � must preserve 
(n2) non-trivial edge events.Otherwise, at least one of the nodes i and j is putinto a class q 2 Q. But then, there exists an entireclass q0 2 Q such that the edge-probabilities from thisnode to q0 are 1/2. Since q0 has 
(n) elements, theresult follows.Note that Lemma 5.2 proves the claim for h < kwhere k is �xed (independent of n).Before we prove the claim for permutations thatmove more points, we make some general observationsthat hold for arbitrary probability spaces of graphs.Let � 2 Sn and K be the set of potential edges,i.e. the set of unordered pairs of elements of [n]. Wecall R � K a witness set for � if K � R intersectsevery orbit of the operation of � on K; in other words,for every pair (i; j) 2 R there exists k 2 N such that(�k(i); �k(j)) 62 R. IfR is a witness set for � 2 Aut(G)and we �x the edges and non-edges of G outside of R,then those inside R are determined as well.The following is a possibile way to construct witnesssets: Let B;C � supp(�) such that B \C = ; and Ccontains, for every b 2 B, precisely one element of the



orbit of b under �. Further, let D = [n] � (B [ C).Then B �D is a witness set.Thus, given a permutation � 2 Sn we can estab-lish an upper bound for E(X�) as follows: We choosesuitable sets B;C and prove that the �rst stage ofthe construction of a random graph must assign edgeprobability 1/2 to at least r pairs in the associatedwitness set B �D. Then E(X�) � 2�r.Lemma 5.3 Let c < (1 � d)2�m and let 2m < h �cn. Then there exists an " > 0 such that E(X�) �2�"(h=2�m)n for � 2 Tn;h.Proof. Let C � supp(�) be any set obtained bypicking precisely one element out of every nontrivialcycle of �, and let B = supp(�) � C. Thus, D =[n]� (B [C) coincides with the set of �xed points of� and therefore contains at least (1� c)n elements. Bcontains at least h=2 nodes, since the support of � isdecomposed into cycles of length � 2 and C containsonly one element of each cycle. Thus, at least h=2�mof the nodes of B are put into some q 2 Q so thateach of these has nontrivial edge-probabilities to atleast one entire class q0 2 Q. Since jq0j � (1�d)2�mn,it follows that jD \ q0j � "n where " = (1 � d)2�m �c. Thus B � D contains at least "(h=2 � m)n pairswith edge probability 1/2. Thus the probability thata random graph G 2 �dn(m; f) is �xed by � is boundedby 2�"(h=2�m)n.Lemma 5.4 For the same constant c as in the previ-ous lemma and h > cn, there exists a � > 0 such thatE(X�) � 2��n2.Proof. Let B;C be disjoint subsets of supp(�) suchthat jBj = cn=2 and C contains precisely one elementof each cycle of � that intersects with B. Again D =[n] � (B [ C) has at least (1 � c)n elements. Withprecisely the same reasoning as in the previous lemma,we infer that B � D contains at least (cn=2 � m)"npairs with edge probability 1/2. By choosing � > 0such that �n2 � (cn=2�m)"n, the result follows.Together, the three lemmata prove the claim, andtherefore the theorem.Theorem 5.1, together with Theorem 4.7 yields:Corollary 5.5 FO[Rig] has a 0-1 law on G(1=2).6 Regular LogicsIn model theory, the notion of a regular logic hasbeen introduced, in order to make precise ideas of

what constitutes a natural extension of �rst-orderlogic. A regular logic can be described as a logic thatcan express all atoms, and is closed under negation,conjunction, particularization (or existential quanti�-cation), relativization and substitution. We refer to[6] for precise de�nitions.Proposition 6.1 For any class K of �-structures,FO[QK] is the minimal logic closed under negation,conjunction, particularization and substitution thatcan express K.Note that FO[QK ] is not necessarily regular since itneed not be closed under relativization. Nevertheless,on the negative side, we get the following consequenceof this proposition and Example 3.3.Theorem 6.2 There is no regular logic that can ex-press Hamiltonicity and has a 0-1 law for G(1=2).In order to show that there is a regular logic thatcan express rigidity on graphs and has a 0-1 law, weneed to consider the closure of FO[Rig] under rela-tivization. This can be obtained by considering a rela-tivized version of the rigidity quanti�er, denoted Rig0,which binds two formulae �(x; �z) and '(x; y; �z). Let = (x 6= y)^ ('(x; y; �z)_'(y; x; �z)) be the irreexiveand symmetric formula associated with '. Then themeaning of a formula Rig0 x; y(�; ') 2 FO[Rig0] in astructure A with valuation �b for �z, is that the graph(�A;�b;  A;�b) is rigid.A simple modi�cation of the proof of Theorem 5.1gives the following result.Theorem 6.3 FO[Rig0] is a regular logic that has a0-1 law for G(1=2).7 Vectorized Quanti�ersIn this section, we consider extensions of �rst-orderlogic formed by adding vectorized quanti�ers. A sin-gle Lindstr�om quanti�er can be seen as giving rise toan in�nite sequence of quanti�ers formed by vectoriza-tion. This allows us to consider interpretations thatare not bound by the universe of a given structure andcan map it to potentially larger structures. Vectorizedinterpretations and quanti�ers capture a natural no-tion of logical reduction. For a discussion of this andits signi�cance for descriptive complexity, see [5].We begin with some de�nitions. Let � =fR1; : : : ; Rmg be a signature where Ri has arity ri. Avectorized interpretation of � in � of width k is givenby a sequence of �-formulas,  1(�x1; �y); : : : ;  m(�xm; �y),



where the length of �xi is k � ri. The variables in �y areparameters. The interpretation maps a �-structure Aalong with an interpretation �a of the parameters inA to a � -structure B, whose universe is Ak, with therelation RBi given by  A;�ai .For any graph quanti�er QH, we de�ne its kthvectorization QkH as a quanti�er that binds 2k vari-ables and whose semantics is given by the follow-ing rule: if  (�x; �y) de�nes a vectorized interpretation	(�y) of width k, then (G; �a) j= QkH�x if and only if	(G; �a) 2 H. We de�ne FO[Q?H] to be the extension of�rst-order logic by the in�nite sequence of quanti�ersfQkHjk 2 Ng.Let � be a vectorized interpretation of width kgiven by a quanti�er free formula, with m parameters.Let G and H be graphs and �a, �b be m tuples of ver-tices from G and H respectively, such that there is anisomorphic embedding f : H ! G with f(�b) = �a. Let�f denote the map from �(H;�b) to �(G;�a) given bythe natural extension of f to k tuples. The followinglemma is based on the observation that quanti�er freeformulas are preserved under isomorphic embeddings.Lemma 7.1 �f is an isomorphic embedding of�(H;�b) in �(G; �a).Proof. If �h1 and �h2 are two k-tuples in H, thenwhether or not there is an edge between them in(�H)(�b) is determined by the quanti�er free formulasin �. However, quanti�er free formulas are clearly pre-served under the isomorphic embedding f , and there-fore �f(�h1) and �f(�h2) have an edge if and only if �h1and �h2 do.Let H be any �xed graph, �b an m-tuple of verticesin H and t the atomic type of �b in H. Recall thatGt;n(p) is a probability space on structures (G;�a), forgraphs G of cardinality n and m-tuples �a of vertices ofG, such that the probability �t;n(G; �a) is non zero onlyif �a has type t in G. Let F(H;�b) denote those structures(G; �a) for which there is an isomorphic embedding f :(H;�b)! (G; �a).Lemma 7.2 For any graph H, and any m-tuple �b ofvertices of H,�t;n(F(H;�b)) = 1� o(n�m):Proof. The proof is immediate from the fact thatthe probability of each of the extension axioms con-verges exponentially quickly to 1 [7].Let H be a collection of graphs that is closed un-der taking substructures. The following lemma, whichis analogous to to Lemma 4.3, is derived from Lem-mas 7.1 and 7.2.

Lemma 7.3 For any quanti�er free formula  de�n-ing a vectorized interpretation 	(�y) of width k, withparameters �y, there is a quanti�er free formula � suchthat the sentence 8�y(� $ QkH�x ) has asymptotic prob-ability 1 for G(p), for any constant p.Proof. We show that for any m-type t, either thereis no pair (H;�b), such that �b has type t in H, and(H;�b) j= QkH�x , and therefore H converges quickly to0 for Gt(p); or H converges quickly to 1 for Gt(p). Itthen follows that we can take � to be the disjunctionof types t such that there is such a pair (H;�b).Suppose now, that for a given t, there is a graphH and a tuple �b of type t in H such that (H;�b) j=QkH�x . It then follows by Lemma 7.1 that for any(G; �a) 2 F(H;�b), (G;�a) j= QkH�x . In other words, forevery (G; �a) 2 F(H;�b), 	(G; �a) 2 H. Therefore, byLemma 7.2 H converges quickly to 1 for Gt(p).This enables us to prove the following theorem, byan elimination of quanti�ers along the lines of Theo-rem 4.7.Theorem 7.4 For any class of graphs H closed undertaking substructures, the logic FO[Q?H] has a 0-1 lawfor G(p), for any constant p.Observe that, by duality, the argument outlinedabove also works for classes of graphs that are closedunder extensions rather than substructures. Thisshould be compared with a result in [8] which showsthat the logic FOr[QH] has a 0-1 law if H is monotoneand closed under extensions. We have weakened thehypothesis by dropping the requirement of monotonic-ity and greatly strengthened the theorem by allowingboth vectorization and nesting of quanti�ers.Writing 3-col for the graph quanti�er de�ned by theclass of 3-colourable graphs, and Plan for the graphquanti�er corresponding to the class of planar graphs,the following two corollaries of Theorem 7.4 are im-mediate.Corollary 7.5 FO[3-col?] has a 0-1 law.Corollary 7.6 FO[Plan?] has a 0-1 law.Moreover, these results are easily extended to the clo-sure of these logics under relativizations. Neither 3-colourability nor planarity has previously been shownto be expressible in a regular logic that is closed un-der vectorization and has a 0-1 law. Corollary 7.5 alsoanswers a question posed by Iain Stewart.



References[1] A. Blass, Y. Gurevich, and D. Kozen, A zero-one lawfor logic with a �xed point operator, Information andControl 67 (1985), 70{90.[2] A. Blass and F. Harary, Properties of almost allgraphs and complexes, Journal of Graph Theory 3(1979), 225{240.[3] B. Bollob�as, Random Graphs, Academic Press, 1985.[4] K.J. Compton, 0-1 laws in logic and combinatorics,in: I. Rival (Ed.), NATO Advanced Study Instituteon Algorithms and Order, pages 353{383, Kluwer,1989.[5] A. Dawar, Generalized quanti�ers and logical re-ducibilities, to appear in Journal of Logic and Com-putation.[6] H.-D. Ebbinghaus, Extended logics: The generalframework, in: J. Barwise and S. Feferman (Eds.),Model-Theoretic Logics, pages 25{76, Springer-Verlag, New York, 1985.[7] R. Fagin, Probabilities on �nite models, Journal ofSymbolic Logic 41 (1976), 50{58.[8] G. Fayolle, S. Grumbach, and C. Tollu, Asymptoticprobabilities of languages with generalized quanti�ers,Proc. 8th IEEE Symp. on Logic in Computer Science(1993).[9] Y. V. Gelbski��, D. I. Kogan, M.I. Ligon'ki��, and V. A.Talanov, Range and degree of realizability of formulasin the restricted predicate calculus, Kibernetika, 2(1969), 17{28.[10] E. Grandjean, Complexity of the �rst-order theory ofalmost all structures, Information and Control, 52(1983), 180{204.[11] Y. Gurevich, Zero-One Laws, in: The Logic in Com-puter Science column, EATCS Bulletin 46 (1992), 90{106.[12] Ph. G. Kolaitis and M. Y. Vardi, 0-1 laws and de-cision problems for fragments of second-order logig,Information and Computation, 87 (1990), 302{338.[13] Ph. G. Kolaitis and M. Y. Vardi, In�nitary logics and0-1 laws, Information and Computation, 98 (1992),258{294.[14] P. Lindstr�om, First order predicate logic with gener-alized quanti�ers, Theoria, 32 (1966), 186{195.[15] V. Talanov, Asymptotic Solvability of Logical Formu-lae, in: Combinatorial-Algebraic Methods in AppliedMathematics, Gorky University (1981), 118{126 (inRussian). Math. Reviews 85i:03081.

[16] V. Talanov and V. Knyazev, The Asymptotic TruthValue of In�nite Formulae, Proc. of the All-UnionSeminar of Discrete Math. and its Applications,Moscow (1986), 55{61 (in Russian). Math. Reviews89g:03054.


